
TranslatAR: A Mobile Augmented Reality Translator on the
Nokia N900

Technical Report 2010-12

Victor Fragoso
∗

vfragoso@cs.ucsb.edu
Steffen Gauglitz

sgauglitz@cs.ucsb.edu
Jim Kleban

kleban@ece.ucsb.edu
Shane Zamora

char42@gmail.com
Matthew Turk

mturk@cs.ucsb.edu

ABSTRACT
Researchers have long been interested in the synergy be-
tween portability and computing power but had been lim-
ited by unwieldy, uncommonly used devices. The latest gen-
eration of mobile phones, i.e. ‘smartphones’, are equipped
with hardware powerful enough to develop novel, interest-
ing applications with allow users to directly interact with
the world around them. This paper describes a multimodal,
augmented reality translator developed using a smartphone’s
(Nokia N900) camera and touchscreen combined with OCR
(Tesseract) and online translation services (Google Transla-
tion API). We describe our methods for tracking, text detec-
tion, OCR and translation, and provide results quantifying
OCR accuracy on a set of signs collected around the UCSB
campus.

1. INTRODUCTION
Have you ever been lost in a foreign country wondering what
the sign in front of you indicates? China (when you don’t
read Chinese) can be particularly bewildering in these situ-
ations. A system which can read text characters in the real
world and translate them to your native language would be
useful while abroad. With the improving imaging, process-
ing, storage, and wireless networking capabilities in today’s
smartphones, real-time multimodal systems which aid the
user in understanding the environment are becoming feasi-
ble. This paper presents a system implemented on a Nokia
N900 phone which allows the user to simply hold up the
phone, and, with a single click, have text translated into
his/her language of choice and see the translation through
the phone’s display (“magic lens” paradigm). This idea is
illustrated in Fig. 1.

Our system was prototyped using standard off-the-shelf li-

∗All authors contributed equally to this project, names ap-
pear in alphabetical order.

Figure 1: With a single click, TranslatAR detects
text area & orientation in a video frame, calls a
translation module in the background, and overlays
the obtained translation onto the live video.

braries which support multiple languages. Much of the com-
puter vision to detect, track, and overlay text is accom-
plished via the OpenCV library. The optical character recog-
nition (OCR) comes from an open source project called
Tesseract, and the translation is provided by Google’s Trans-
late web service. Our system was developed on the Nokia
N900 platform running on Maemo 5 Linux offering com-
monly used development tools. This makes our application
TranslatAR easy to extend and improve by other develop-
ers compared to systems on other platforms. This paper will
provide an overview of how our augmented reality transla-
tion application works. We also quantify the OCR perfor-
mance to provide a feel for how often the translation can
succeed.

The remainder of this paper is structured as follows: Sec-
tion 2 gives an overview of related work. Section 31 pro-
vides details on the OCR & translation core of our system,
Section 42 explains the structure of the video processing
“frame”, including processing of the user’s input, live track-
ing, and video augmentation. Both sections include analysis
of specific key aspects. Finally, Section 5 concludes.

2. RELATED WORK

Automatic translation helpers. Various stand alone elec-
tronic translation devices are available that provide dictio-
nary and translation functionality, such as the Franklin TGA-

1(Jim & Shane)
2(Victor & Steffen)



470 Global Translator. Language translation applications
that provide dictionaries or text string translation capabil-
ities are also available on mobile devices. iTranslate is an
iPhone app that provides two-way translation between five
languages, and provides text-to-speech functionality for each
language. Jibbigo is an iPhone app that provides speech-to-
speech translation between Spanish and English. Paul et
al. [11] developed a distributed speech-to-speech translation
system between Japanese and English. These systems how-
ever require the user to type in the text to translate or to
(be able to) voice and pronounce the text in question.

OCR & Visual translation. The components of locating,
recognizing, and translating text have been the focus of ex-
tensive research efforts. Optical character recognition (OCR)
[8] has a long history with the primary goal of digitizing
scanned documents. While classical OCR systems are ca-
pable of recognizing text with high accuracy while main-
taining basic structural/layout information, they typically
require high signal-to-noise ratio and correct, distortion-free
orientation of the text.

Systems for automatic translation of signs have been pre-
viously devised by researchers. Yang et al. [17] devised a
system for Chinese signs that combined textual OCR with
symbol detection. The main contribution of their work con-
sisted of sign extraction. Their prototype, Smart Sight [18],
consisted of an unwieldy wearable computer with a video
camera, was limited in language flexibility, and did not use
the magical lens paradigm. It did, however, provide ad-
ditional feedback in the form of speech synthesis. Hari-
taoglu [2] also developed a system for automatic translation
of Chinese signs on mobile devices using a PDA with an at-
tached camera. Watanabe et al. [16] developed a system for
automatic detection and translation of Japanese text into
English using a camera on a mobile phone. While these
aforementioned works are most similar to ours, we offer a
particularly easy-to-use (single click) and compelling (aug-
mented reality overlay of the result) user interface.

Localizing text. Researchers [6, 3] have been interested in
locating and recognizing text in video streams for purposes
including information retrieval and license plate identifica-
tion. Park & Jung [10] developed a system for automatic
detection of words in images from mobile devices. Liu et
al. [7] developed an edge-based method for text extraction
for mobile robots that provides excellent results in extracting
text from scenes. Palaiahnakote et al. [9] developed another
text detection technique in a video streaming. Both of these
approaches however assume that text is roughly horizontal
and seen without perspective distortion. In contrast, our
approach is robust to significant perspective distortion, not
requiring the user to stand perpendicular to the text plane.

Tracking on mobile phones. Visual tracking without vi-
sual markers in real-time has succesfully been demonstrated
on mobile phones, both with known targets [14, 15] and
without [5]. Focusing solely on tracking, above systems are
technically more advanced and robust than the tracking used
here, but many aspects of our approach are similar to [5, 4].

Figure 2: Images of strings of text captured by the
primary camera of the N900 device (left), compared
to scanned documents (right) that comprise the ma-
jority of documents provided to OCR platforms for
text extraction.

3. PART 1: OCR & TRANSLATION
The core components of TranslatAR that provide the novel
functionalities we are interested in are the OCR and written
language translation components. Our goal was to find the
most robust free or open-source packages that could perform
these tasks on a mobile device. We chose to employ the
Tesseract OCR Engine and Google’s Translate web service
for these purposes.

Tesseract is an OCR engine developed by HP from 1985 to
1995 until the project was continued and released as open-
source by Google in 2005. Tesseract is easily compiled on
our target platform and is considered one of the most ac-
curate freely available OCR packages. Google’s Translate
web service is freely available to any device with an inter-
net connection, requires no platform specific implementa-
tion, and provides a “Detect Language” functionality on the
text provided for translation. As TranslatAR could be used
to translate text from any language into any other language,
Google Translate handles all combinations of languages for
free. We will describe the details of employing both systems
on a mobile device in the following subsections.

3.1 OCR with Tesseract
Tesseract is a command line tool that accepts a TIFF im-
age as input, and returns a text file containing the captured
text. It performs none of the document or layout analysis
that other OCR packages provide, besides the seperation of
horizontal lines of text in the image by newlines. There are
also no options by which to request additional functional-
ity – Tesseract is instead a raw OCR engine that focuses pri-
marily on character recognition accuracy. It is open source,
compiles easily on any platform, and performs all that is
necessary for TranslatAR’s purpose.

However, the primary domain that current OCR engines
optimize for are scanned documents. Scanned documents
are typically 300 or higher dpi images with high contrast
and little noise. Our application uses a video feed from
the camera of a Nokia N900 which captures at a 640x480
resolution with relatively little contrast and copious amounts
of noise. Fig. 2 compares some examples of text captured
with a Nokia N900 versus a scanned document.

We developed an application that prototyped the usage of
Tesseract on the N900. The application would display a
video feed onto the device’s screen, on which the user would
tap to freeze the stream. The user would then draw two lines
flush to, above, and below the text to be captured for recog-
nition. The four points of these two lines would be used to



show video feed

freeze frame

calculate homography &
extract image data

extract image data

Tap on screen

start background process

Draw lines 
above/below text

run Tesseract on image

run text through
Google Translate

display capture and 
translation

Wait

Start

Dismiss dialog

Figure 3: Structure of the OCR/Translation proto-
type.

compute the enclosed quadrilateral’s homography and per-
form a perspective correction in order to provide better ori-
ented input to Tesseract. Finally, the rectified image data
would be saved as a TIFF image and Tesseract would be to
used retrieve it’s containing text.

Our implementation used OpenCV in order to retrieve a
video feed from the N900’s video camera. Although the
camera on the device can be accessed using GStreamer to
gain better control over the video feed, we were not success-
ful in using it to gain any particular advantage to what was
more easily provided by OpenCV. We computed the homog-
raphy transformation with CLAPACK by using the singular
value decomposition (SVD) of a composite matrix. GTK+
and the Hildon library developed for Maemo 5 (the N900’s
operating system) were used to provide a user interface for
video playback and touch screen tapping and line dragging.
Finally, we pop up a seperate window showing the rectified
image, the captured text as provided by Tesseract, as well
as the translated text provided by Google Translate. A flow
chart of our prototype’s functionality can be seen in Fig. 3.

Analysis. Some examples using our prototype can be seen
in Fig. 4. In order to determine the effect of using the OCR
package on a lower resolution camera and on signs imaged
in the real world we collected a test set and measured per-
formance. We used the Nokia N900 and a Sony Cybershot
7MP digital camera to take photos of 42 signs around the
UC Santa Barbara campus in order to test the character
and word accuracy rates of Tesseract using data captured
from the N900 versus a more powerful camera in order to
compare results to a more ideal hardware configuration.

Results are shown in the Table 3.1. As a baseline, the first
row in the table shows character and word accuracy rates for
Tesseract on a standard document text data set, News.3B
[13]. The respective rates of 98.47% and 97.51% are fairly
high and competitive with the state of art in OCR. The
next two rows compare the results we achieve with the N900

Figure 4: Some of the extracted text regions from
the test set of 42 signs gathered around the UCSB
campus using the Nokia N900 camera.

Dataset #Chars Acc #Words Acc
News.3B [13] 7524 98.47% 1220 97.51%
Signs, N900 855 87.01% 169 72.78%
Signs, Sony 855 87.60% 169 74.56%

Table 1: OCR rates

camera to the best rate for the Nokia camera found after
downsampling the input images to a maximum width 600
pixels. In both cases, the location of the text was manually
annotated and warped using a homography as described pre-
viously in this section. Character recognition accuracy was
measured by determining the number of correct characters
returned out of the number possible in the input image. As
can be seen from the table, camera quality (resolution, aut-
ofocus) does not make much of a difference. The Sony only
slightly outperforms the N900 for this set of images contain-
ing mostly large fonts. Surprisingly, the Sony performed
worse when using the full 3072 x 2304 pixel image as many
small noise spots were falsely identified as characters. The
resulting rates of 87.01% character rate and 72.78% word
rate show that the challenges of imaging real world signs,
illumination, perspective, scale, and other photometric vari-
ances have a significant impact on performance. Word rate
drops quickly with increasing character errors, these rates
would not be acceptable for scanned documents.

3.2 Translation with Google Translate
Google provides a free real-time web-based service which
provides the translation necessary for our application. In
addition to translating to a specified destination language
(which the user can select), the Google Translate API also
can detect the source language of the input text. Primar-
ily released in order to aid the translation of webpages, the
API responds with JSON to HTTP GET/POST requests.
It can translate from to at least 51 languages including Chi-
nese, English, German, French, Russian and Spanish. Unlike
traditional translation systems which use rules and dictio-
nary lookups, Google’s approach to translation has been to
learn it via accumulating data on known translated doc-



Figure 5: Main structure of the video processing
system.

ument pairs. Integration of the API into TranslatAR is
straightforward using the curl C++ library and then pars-
ing the results returned from Google’s server. The resulting
text is passed the augmenting module. One downfall of the
translation API is it cannot currently handle spelling errors,
which is a particularly acute problem given poor OCR.

4. PART 2: USER INPUT, TRACKING
& VIDEO AUGMENTATION

While part 1 covers the core functionality of TranslatAR,
the objective of this part is to increase the ease-of-use and
the level of immersion for the translation. Specifically, in-
stead of“freezing”the video stream and requiring the user to
outline the text area manually, the user only has to “tap” on
the word he/she would like to translate, the area is automat-
ically tracked, and as soon as the translation (as provided
by part 1) is ready, it will be overlaid on the video stream
in the right colors and orientation.

The main tasks for this part are:

• a framework to process a live video stream from the
camera’s viewfinder,

• detecting the text area given a single “tap” on the
screen,

• real-time tracking of the region of interest over a short
period of time,

• overlaying the provided text on the video.

Fig. 5 shows the main structure of the overall system: Ini-
tially, the system just grabs and displays frames. Upon the
user’s “tap”, the text area is detected, the OCR & transla-
tion process (i.e., part 1) started, and the tracker is initial-
ized. During tracking, a translation (or a placeholder until

Figure 6: Tracking process.

the translation is available) is drawn as an “augmented re-
ality” overlay on the video. The main components will be
described in detail in the following subsections. Section 4.4
presents a short analysis of key aspects.

4.1 Tracking
Fig. 6 shows the components of the tracking process. First,
FAST corners [12] are extracted from the video, then mat-
ched against the corners from the last frame using a sim-
ple 9x9 image patch descriptor. To speed up the matching
process (which otherwise is quadratic in the number of key-
points), the matching is contrained to a small circular area
around the last position, and descriptors are only computed
(i.e. sampled from the image) when needed.

After this, RANSAC is used to sort out outliers and finally,
a homography between the last and the current frame is esti-
mated, minimizing the squared error of all “inlier” matching
pairs. Note that the estimating a homography implies that
the area to be tracked is planar, which is a fair assumption
considering that we are interested in a fairly constrained area
containing text. Finally, all “lost” interest points are repro-
jected into the new frame so that the number of tracked
points remains the same – this is computationally more ef-
ficient than searching for new keypoints to replace the lost
ones.

Note that both detector and descriptor are the same that
were used in Klein & Murray’s seminal work“Parallel Track-
ing and Mapping” [4], where the authors opt for many very
efficient to compute features rather than few expensive ones.
For our work, FAST was chosen as it faster than other pop-
ular interest point detectors by at least one order of mag-
nitude [1]. The (compared to other detectors) rather low
repeatability for noisy video [1] is acceptable, as we assume
a cooperative user and only require tracking over a short
period of time and small to medium changes in viewpoint.
For the same reasons, image patches are the most suitable
descriptor, as they require very little time to compute and
invariance to in-plane rotation or robustness for large base-
line matching is not required.



4.2 Text Detection
Fig. 7 illustrates the main steps an overall of the text detec-
tion process. The text detection module takes the current
frame and the point (xp, yp) provided by the user’s “tap”.
First, both horizontal (Ix) and vertical (Iy) image gradients
are computed using a first-order Sobel-Scharr kernel.

An approximate text bounding box is determined as follows:
Starting from (xp, yp), the vertical extent (i.e., text height)
is determined by expanding a vertical strip until the maxi-
mum vertical gradient encountered along its upper and lower
edge fall below a predefined threshold (indicated by the red
lines in Fig. 7(a) – denote by yu and yl, respectively). Then
the horizontal extent is computed with the same method,
using the approximated text height to determine both the
height of the horizontal strip and the width of the gap that
is required to stop the expansion. Resizing the gap with the
text prevents that the algorithm stops between two letters
while being more invariant to different text sizes. The ap-
proximated bounding box is indicated by the red lines in
Fig. 7(b).

Then, a constrained and modified“Hough Transform”is used
to determine the exact position and orientation of the text:
Considering all lines that cut the segment (xp, yu), (xp, yl)
(bright red line in Fig. 7(c)) and within an angle of 0◦± 15◦

(quantized with 1-pixel and 1◦ steps, respectively), select
the line segment that maximizesX

Ix(x, y)− Iy(x, y)

where the sum includes all pixels on the line (bilinearly in-
terpolated) between the left and right limit. That is, select
the line that is best supported by horizontal edges while
cutting few vertical edges. Fig. 7(c) illustrates the result-
ing line segments for this example (one each for lower and
upper half). Finally, the lower line is shifted down until it
goes through (xp, yl), to include potential descenders, and
vice versa for the upper line. The final area is outlined in
red in Fig. 7(d).

Note that this algorithm is robust to significant perspective
distortion, not forcing the user to stand perpendicularly in
front of the text, but not to in-plane rotation, assuming that
the user will hold the phone approximately horizontal.

4.3 Video Augmentation
The last step of TranslatAR is to display the translation
by augmenting the video stream over the region of interest.
This process consits of two parts: extraction of foreground
and background color and rendering of the graphical overlay.

Foreground-Background Color extraction. The extrac-
tion of these colors is executed before calling the OCR, tak-
ing as input the rectified image clip containing the text (i.e.
the same image that the OCR system receives). The back-
ground color is extracted by sampling a horizontal line in the
upper bound and taking the average as estimation, assuming
that the background will be roughly uniform.

Given that the text must be clearly readable, we may as-
sume that the foreground color has a strong contrast with

Component Time
capture frame 24 ms
frame preprocessing 34 ms
detect keypoints 4 ms
descriptor & matching process 24 ms
RANSAC & homography estimation 22 ms
reprojection of “lost” keypoints 1 ms
draw AR overlay 24 ms
total time per frame 263 ms

Table 2: Examplary execution time for the main
steps of the processing pipeline. Frame preprocess-
ing includes color conversion (from the camera’s na-
tive YUV to RGB for the display, and to grayscale
for the tracking) and downsampling (from 640x480
to 320x240). Time for descriptor creation & match-
ing cannot be broken down further, as descriptors
are only created when needed and thus are inter-
twined with the matching, same for RANSAC &
homography estimation.

the background. Taking this into account, the foreground
color estimation is done by scanning pixels starting from a
point in the center, and accepting a sample as estimation of
the foreground color if its intensity is sufficiently different
from the background. This technique was chosen over more
accurate estimators (such as k-means clustering) due to its
very low processing time requirements.

Overlay process. The overlay process is the final routine
in the main system pipeline. The translated text is rendered
in a separated image using the background and foreground
color by OpenCV routines. A warping transformation is
then applied in order to fit the requested area to overlay and
finally a mask operation is applied to “merge” the current
frame and the rectified translation. By doing this, we overlay
the translation onto the current frame.

4.4 Analysis

Time. Table 2 shows some representative timings for the
video processing & tracking pipeline. So far, no special
hardware acceleration has been employed, however, we went
to several iterations of optimizing the code and removing
bottlenecks, most notably, moving memory allocation into
startup were feasible, making sure that no redundant or su-
perfluous computation occurs (such as information that is
needed at multiple different components, or descriptors that
are actually never matched), and a per-row-access look-up
table for keypoints (see [4]).

Table 2 shows that there is no single component which con-
sumes a majority of the computation time, and hence it is
difficult to achieve a significant speed-up with a single mea-
sure. However, several measures would be reasonable to
implement:

• Compared to the difficult task of real-time tracking,
the time to capture & preprocess the frame seems very
high. As obvious from the N900’s built-in camera ap-
plication, much higher framerates are feasible here. Es-



(a) (b) (c) (d)

Figure 7: Text detection operating on the image shown in Fig. 1. First, the vertical extent of the text
is determined (a), then – using the assumed text height – the horizontal extent (b). A constrained “Hough
Transform” is used to determine the exact baseline and orientation (c), and finally, the area is expanded to
account for ascenders and descenders (d).

Result # of images Percentage
very good 22 56.4%
acceptable 8 20.5%
bad 9 23.1%
total 39 100%

Table 3: Text detection accuracy on 39 signs (same
dataset as used in Section 3). “Acceptable” perfor-
mance is when the detected area is approximately
correctly oriented, but larger than necessary. On
these images, the OCR is still likely to work cor-
rectly, but the AR overlay will look “off”.

pecially color conversion is perfectly parallizable and
should be moved e.g. to the GPU.

• Likewise, drawing the text augmentation (which on
the CPU has to be implemented as rendering of the
text, warping the text, and merging the text onto the
video frame) should be implemented with the help of
OpenGL shaders. We started implementing a respec-
tive solution, but were not able to finish it in time due
to some peculiarities in the off-screen initialization pro-
cess of OpenGL ES 2.0.

Tracking Performance. Admittedly, our application is a
reasonably simple case for tracking compared to other track-
ing applications [5, 15]: the target is known to be well-
textured (as it contains text) and planar, we require tracking
only over short periods of time, and do not need the capa-
bility of “expanding” tracking areas or recovery. Moreover,
we can assume that the user is cooperative and focuses on
a single object.

However, given this (and with the cutback of low framerate,
see above), the tracking works quite well: it is capable of
“following” the text long enough to retrieve and read the
translation despite normal amounts of jitter and supports
changes of viewpoint and “zooming” to inspect the result.

Text Detection Performance. We evaluated our text de-
tection algorithm using the dataset of signs collected on
UCSB’s campus that was used in part 1. Table 3 lists the ob-
tained results, Fig. 8 shows several examples of both good
and bad detection results. Major problems are especially
non-uniform background (see Fig. 8 bottom left) and un-
usual fonts, text proportions, spacing, or sizes (see Fig. 8
bottom right).

5. CONCLUSIONS
We have presented a prototype implementation of a single-
click augmented reality translator developed on the Nokia
N900 smartphone. The application is capable of overlay-
ing an automatically translated text over a region of inter-
est which is extracted and tracked in the video stream of
the camera. While accuracy improves if the user manually
annotates the region where the text lies in the scene, this
would require interrupting the tracking harming the aug-
mentation. We rapidly developed our prototype within a
period of six weeks using many open source tools including
OpenCV, Tesseract, and the Google Translate API. While
we were able to address all previously set goals and hence
consider our prototype a success, there are many issues that
require careful engineering before translatAR will be useful
for real-world use. Most notably,

• lack of control over the viewfinder’s focus currently
limits translatAR to relatively large fonts,

• the framerate has to be significantly improved, the
most obvious way is to make use of hardware accel-
eration in many of the image processing & rendering
tasks,

• “real world”imaging problems such as illumination vari-
ance, glare, and dirt are found to cause significant
problems for both our text detection and the Tesser-
act OCR module. Integration of a spell checker before
translation would absorbe some of the OCR errors.

6. ACKNOWLEDGMENTS
The authors would like to thank Matthew Turk and Nokia
for providing the hardware used for this work, and Daniel
Vaquero and Natasha Gelfand at the Nokia Research Center
Palo Alto for their help with various implementation aspects
on the N900 (most notably the camera drivers).

7. REFERENCES
[1] S. Gauglitz and T. Höllerer. In-depth evaluation of

popular interest point detectors on video streams.
Technical Report 2009-08, Department of Computer
Science, UC Santa Barbara, May 2009.

[2] I. Haritaoglu. Scene text extraction and translation for
handheld devices. In Computer Vision and Pattern
Recognition, 2001. CVPR 2001. Proceedings of the
2001 IEEE Computer Society Conference on,
volume 2, pages II–408–II–413 vol.2, 2001.

[3] A. Jain and B. Yu. Automatic text location in images
and video frames. In Pattern Recognition, 1998.
Proceedings. Fourteenth International Conference on,
volume 2, pages 1497–1499 vol.2, Aug 1998.



Figure 8: Examples of good (top row) and bad (bottom row) text detection. Remarkably, our algorithm
was able to very accurately detect the word in the rather sloppily hand-written sign (top right). The failure
cases are due to very non-uniform background (left); incorrect exclusion of ascenders (second left); failure to
detect horizontal borders as the margin between text and sign is very narrow (second right); letters are very
large, so that the expansion algorithm stops inside one of the letters (right).

[4] G. Klein and D. Murray. Parallel tracking and
mapping for small AR workspaces. In Proc. Sixth
IEEE and ACM Intl. Symposium on Mixed and
Augmented Reality (ISMAR’07), Nara, Japan,
November 2007.

[5] G. Klein and D. Murray. Parallel tracking and
mapping on a camera phone. In Mixed and Augmented
Reality, 2009. ISMAR 2009. 8th IEEE International
Symposium on, pages 83–86, Oct. 2009.

[6] R. Lienhart. Automatic text recognition for video
indexing. In MULTIMEDIA ’96: Proceedings of the
fourth ACM international conference on Multimedia,
pages 11–20, New York, NY, USA, 1996. ACM.

[7] X. Liu and J. Samarabandu. An edge-based text
region extraction algorithm for indoor mobile robot
navigation. In Mechatronics and Automation, 2005
IEEE International Conference, volume 2, pages
701–706 Vol. 2, July-1 Aug. 2005.

[8] S. Mori, H. Nishida, and H. Yamada. Optical
Character Recognition. John Wiley & Sons, Inc., New
York, NY, USA, 1999.

[9] T. Q. P. Palaiahnakote Shivakumara and C. L. Tan. A
gradient difference based technique for video text
detection. International Conference on Document
Analysis and Recognition, 1:156–160, 2009.

[10] A. Park and K. Jung. Automatic word detection
system for document image using mobile devices. In
HCI (2), pages 438–444, 2007.

[11] M. Paul, H. Okuma, H. Yamamoto, E. Sumita,
S. Matsuda, T. Shimizu, and S. Nakamura.
Multilingual mobile-phone translation services for
world travelers. In Coling 2008: Companion volume:
Demonstrations, pages 165–168, Manchester, UK,
August 2008. Coling 2008 Organizing Committee.

[12] E. Rosten and T. Drummond. Machine learning for
high-speed corner detection. In Proc. 2006 European
Conf. on Computer Vision (ECCV’06), volume 1,
pages 430–443, May 2006.

[13] R. Smith. An overview of the tesseract ocr engine. In
ICDAR ’07: Proceedings of the Ninth International

Conference on Document Analysis and Recognition,
pages 629–633, Washington, DC, USA, 2007. IEEE
Computer Society.

[14] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond,
and D. Schmalstieg. Pose tracking from natural
features on mobile phones. In Proc. 7th IEEE and
ACM Intl. Symposium on Mixed and Augmented
Reality (ISMAR’08), Cambridge, UK, Sept. 15–18
2008.

[15] D. Wagner, D. Schmalstieg, and H. Bischof. Multiple
target detection and tracking with guaranteed
framerates on mobile phones. In Mixed and
Augmented Reality, 2009. ISMAR 2009. 8th IEEE
International Symposium on, pages 57–64, Oct. 2009.

[16] Y. Watanabe, K. Sono, K. Yokomizo, and Y. Okada.
Translation camera on mobile phone. In Multimedia
and Expo, 2003. ICME ’03. Proceedings. 2003
International Conference on, volume 2, pages
II–177–80 vol.2, July 2003.

[17] J. Yang, J. Gao, Y. Zhang, and A. Waibel. Towards
automatic sign translation. In HLT ’01: Proceedings of
the first international conference on Human language
technology research, pages 1–6, Morristown, NJ, USA,
2001. Association for Computational Linguistics.

[18] J. Yang, W. Yang, M. Denecke, and A. Waibel. Smart
sight: A tourist assistant system. In ISWC ’99:
Proceedings of the 3rd IEEE International Symposium
on Wearable Computers, page 73, Washington, DC,
USA, 1999. IEEE Computer Society.


